资源类型

期刊论文 228

年份

2023 27

2022 23

2021 22

2020 24

2019 6

2018 20

2017 21

2016 7

2015 10

2014 6

2013 12

2012 11

2011 5

2010 4

2009 11

2008 5

2007 5

2005 2

2002 1

2001 1

展开 ︾

关键词

增材制造 5

提高采收率 2

激光选区熔化 2

电子束 2

选择性激光熔化 2

3D打印 1

Tetrasphaera 1

CCS 1

CO2地下埋存 1

CO2分离 1

FGR预测 1

HEMTs);栅槽;数字湿法腐蚀;选择性湿法腐蚀 1

SARS 1

不正常航班管理 1

主动回收 1

主动控制 1

二次防御 1

二氧化硫 1

五模材料 1

展开 ︾

检索范围:

排序: 展示方式:

Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 749-758 doi: 10.1007/s11705-022-2261-0

摘要: Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.

关键词: lithium iron phosphate powder     stoichiometric number     selective leaching     lithium recovery    

Selective recovery of Cu

Haiping LUO,Bangyu QIN,Guangli LIU,Renduo ZHANG,Yabo TANG,Yanping HOU

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 522-527 doi: 10.1007/s11783-014-0633-5

摘要: As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu and Ni ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu and Ni ions were removed by using the MFC and the MEC, respectively. At an initial Cu concentration of 500 mg·L , removal efficiencies of Cu increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni concentrations from 250 to 1000 mg·L , and maximum power densities increased from 3.1±0.5 to 5.4±0.6 W·m . The Ni removal mass in the MEC increased from 6.8±0.2 to 20.5±1.5 mg with the increase of Ni concentrations. At an initial Ni concentration of 500 mg·L , Cu removal efficiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu concentrations from 250 to 1000 mg·L , and maximum power densities increased from 3.0±0.1 to 6.3±1.2 W·m . Subsequently, the Ni removal efficiencies decreased from 96.9%±3.1% to 73.3%±5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu and Ni from the wastewater using the bioelectrochemical system.

关键词: bioelectrochemical system     Cu2+     Ni2+     selective recovery    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 308-316 doi: 10.1007/s11705-016-1587-x

摘要: Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia-based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.

关键词: copper recovery     electronic waste     end-of-life products     selective leaching     electrodeposition    

Improved resilience measure for component recovery priority in power grids

《工程管理前沿(英文)》 2021年 第8卷 第4期   页码 545-556 doi: 10.1007/s42524-021-0161-5

摘要: Given the complexity of power grids, the failure of any component may cause large-scale economic losses. Consequently, the quick recovery of power grids after disasters has become a new research direction. Considering the severity of power grid disasters, an improved power grid resilience measure and its corresponding importance measures are proposed. The recovery priority of failed components after a disaster is determined according to the influence of the failed components on the power grid resilience. Finally, based on the data from the 2019 Power Yearbook of each city in Shandong Province, China, the power grid resilience after a disaster is analyzed for two situations, namely, partial components failure and failure of all components. Result shows that the recovery priorities of components with different importance measures vary. The resilience evaluations under different repair conditions prove the feasibility of the proposed method.

关键词: resilience measure     power grid     importance measure     component recovery    

Recent advances in selective acetylene hydrogenation using palladium containing catalysts

Alan J. McCue, James A. Anderson

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 142-153 doi: 10.1007/s11705-015-1516-4

摘要: Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.

关键词: acetylene     ethylene     selective hydrogenation     palladium     bimetallic    

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 745-754 doi: 10.1007/s11705-021-2038-x

摘要: Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

关键词: block copolymers     selective swelling     ultrafiltration     CaCO3 nanoparticles     sacrificial nanofillers    

Technologies for pollutant removal and resource recovery from blackwater: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1683-3

摘要:

● Blackwater is the main source of organics and nutrients in domestic wastewater.

关键词: Blackwater     Water-flushing toilet     Sanitation     Nutrient recovery     Water reuse     Sustainable development    

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 581-593 doi: 10.1007/s11705-022-2235-2

摘要: Selective separation of dissolved tungsten and vanadium is of great significance for the utilization of the secondary resources of these elements. In this work, selective removal of vanadium from tungstate solutions via microbubble floating-extraction was systematically investigated. The results indicated that vanadium can be more easily mineralized over tungsten from tungstate solutions using methyl trioctyl ammonium chloride as mineralization reagent under weak alkaline conditions. Owing to the higher bubble and interface mass transfer rates, high-efficiency enrichment and deep separation of vanadium could be achieved easily. Additionally, the deep recovery of tungsten and vanadium from the floated organic phase could be easily realized using a mixed solution of sodium hydroxide and sodium chloride as stripping agents. The separation mechanism mainly included the formation of hydrophobic complexes, their attachment on the surface of rising bubbles, and their mass transfer at the oil–water interface. Under the optimal conditions, the removal efficiency of vanadium reached 98.5% with tungsten loss below 8% after two-stage microbubble floating-extraction. Therefore, the microbubble floating-extraction could be an efficient approach for separating selectively vanadium from tungstate solutions, exhibiting outstanding advantages of high separation efficiency and low consumption of organic solvents.

关键词: tungsten     vanadium     selective separation     reagent mineralization     microbubble floating-extraction    

Dissolved methane in anaerobic effluent: Emission or recovery?

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-022-1537-4

摘要: Various anaerobic processes have been explored for the energy-efficient treatment of municipal wastewater. However, dissolved methane in anaerobic effluent appears to be a barrier towards the energy and carbon neutrality of wastewater treatment. Although several dissolved methane recovery methods have been developed, their engineering feasibility and economic viability have not yet been assessed in a holistic manner. In this perspective, we thus intend to offer additional insights into the cost-benefit of dissolved methane recovery against its emission.

关键词: Anaerobic treatment     Municipal wastewater     Dissolved methane     Methane recovery     Carbon emission    

Mechanistic insights into the selective photocatalytic degradation of dyes over TiO/ZSM-11

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1701-5

摘要:

● TiO2/ZSM-11 was prepared by a facile solid state dispersion method.

关键词: Selective dye degradation     Photocatalysis     TiO2     ZSM-11     Chemisorption    

China Launched the First Wastewater Resource Recovery Factory in Yixing

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期 doi: 10.1007/s11783-021-1496-1

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered

《化学科学与工程前沿(英文)》   页码 1643-1650 doi: 10.1007/s11705-022-2201-z

摘要: Microcapsules are versatile delivery vehicles and widely used in various areas. Generally, microcapsules with solid shells lack selective permeation and only exhibit a simple release mode. Here, we use ultrathin-shell water-in-oil-in-water double emulsions as templates and design porous ultrathin-shell microcapsules for selective permeation and multiple stimuli-triggered release. After preparation of double emulsions by microfluidic devices, negatively charged shellac nanoparticles dispersed in the inner water core electrostatically complex with positively charged telechelic α,ω-diamino functionalized polydimethylsiloxane polymers dissolved in the middle oil shell at the water/oil interface, thus forming a porous shell of shellac nanoparticles cross-linked by telechelic polymers. Subsequently, the double emulsions become porous microcapsules upon evaporation of the middle oil phase. The porous ultrathin-shell microcapsules exhibit excellent properties, including tunable size, selective permeation and stimuli-triggered release. Small molecules or particles can diffuse across the shell, while large molecules or particles are encapsulated in the core, and release of the encapsulated cargos can be triggered by osmotic shock or a pH change. Due to their unique performance, porous ultrathin-shell microcapsules present promising platforms for various applications, such as drug delivery.

关键词: microcapsule     emulsion     microfluidics     selective permeation     stimuli-triggered release    

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 103-112 doi: 10.1007/s11705-017-1671-x

摘要: Toluene methylation with methanol offers an alternative method to produce -xylene by gathering methyl group directly from C1 chemical sources. It supplies a “molecular engineering” process to realize directional conversion of toluene/methanol molecules by selective catalysis in complicated methylation system. In this review, we introduce the synthesis method of -xylene, the development history of methylation catalysts and reaction mechanism, and the effect of reaction condition in -selective technical process. If constructing -xylene as the single target product, the major challenge to develop -selective toluene methylation is to improve the -xylene selectivity without, or as little as possible, losing the fraction of methanol for methylation. To reach higher yield of -xylene and more methanol usage in methylation, zeolite catalyst design should consider improving mass transfer and afterwards covering external acid sites by surface modification to get short “micro-tunnels” with shape selectivity. A solid understanding of mass transfer will benefit realizing the aim of converting more methanol feedstock into -methyl group.

关键词: shape selective catalysis     methylation of toluene    

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1052-9

摘要:

Resource recovery from wastewater is a key function of bioelectrochemical systems.

NEW resources to recover include Nutrient, Energy, and Water.

Identifying proper application niches can guide BES research and development.

More efforts should be invested to the application of recovered resources.

A mindset for energy performance and system scaling is critically important.

关键词: Bioelectrochemical systems     Resource recovery     Wastewater treatment     Energy     Nutrients    

标题 作者 时间 类型 操作

Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone

期刊论文

Selective recovery of Cu

Haiping LUO,Bangyu QIN,Guangli LIU,Renduo ZHANG,Yabo TANG,Yanping HOU

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

期刊论文

Improved resilience measure for component recovery priority in power grids

期刊论文

Recent advances in selective acetylene hydrogenation using palladium containing catalysts

Alan J. McCue, James A. Anderson

期刊论文

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

期刊论文

Technologies for pollutant removal and resource recovery from blackwater: a review

期刊论文

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

期刊论文

Dissolved methane in anaerobic effluent: Emission or recovery?

期刊论文

Mechanistic insights into the selective photocatalytic degradation of dyes over TiO/ZSM-11

期刊论文

China Launched the First Wastewater Resource Recovery Factory in Yixing

期刊论文

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered

期刊论文

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie

期刊论文

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

期刊论文